Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

Identifieur interne : 001930 ( Main/Exploration ); précédent : 001929; suivant : 001931

Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

Auteurs : Ravi S. Pandey [États-Unis] ; Rajeev K. Azad [États-Unis]

Source :

RBID : pubmed:26694866

Descripteurs français

English descriptors

Abstract

Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non-recombining region of both the chromosomes.

DOI: 10.1007/s11103-015-0422-y
PubMed: 26694866


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.</title>
<author>
<name sortKey="Pandey, Ravi S" sort="Pandey, Ravi S" uniqKey="Pandey R" first="Ravi S" last="Pandey">Ravi S. Pandey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of North Texas, Denton, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of North Texas, Denton, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Azad, Rajeev K" sort="Azad, Rajeev K" uniqKey="Azad R" first="Rajeev K" last="Azad">Rajeev K. Azad</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of North Texas, Denton, TX, USA. Rajeev.Azad@unt.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of North Texas, Denton, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mathematics, University of North Texas, Denton, TX, USA. Rajeev.Azad@unt.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mathematics, University of North Texas, Denton, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26694866</idno>
<idno type="pmid">26694866</idno>
<idno type="doi">10.1007/s11103-015-0422-y</idno>
<idno type="wicri:Area/Main/Corpus">001992</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001992</idno>
<idno type="wicri:Area/Main/Curation">001992</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001992</idno>
<idno type="wicri:Area/Main/Exploration">001992</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.</title>
<author>
<name sortKey="Pandey, Ravi S" sort="Pandey, Ravi S" uniqKey="Pandey R" first="Ravi S" last="Pandey">Ravi S. Pandey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of North Texas, Denton, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of North Texas, Denton, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Azad, Rajeev K" sort="Azad, Rajeev K" uniqKey="Azad R" first="Rajeev K" last="Azad">Rajeev K. Azad</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of North Texas, Denton, TX, USA. Rajeev.Azad@unt.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of North Texas, Denton, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mathematics, University of North Texas, Denton, TX, USA. Rajeev.Azad@unt.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mathematics, University of North Texas, Denton, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Carica (genetics)</term>
<term>Carica (metabolism)</term>
<term>Chromosomes, Fungal (genetics)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Cluster Analysis (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Fungi (genetics)</term>
<term>Genes, Mating Type, Fungal (genetics)</term>
<term>Populus (genetics)</term>
<term>Silene (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Algorithmes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Carica (génétique)</term>
<term>Carica (métabolisme)</term>
<term>Champignons (génétique)</term>
<term>Chromosomes de champignon (génétique)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Gènes fongiques du type conjugant (génétique)</term>
<term>Populus (génétique)</term>
<term>Silene (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Carica</term>
<term>Chromosomes, Fungal</term>
<term>Chromosomes, Plant</term>
<term>Fungi</term>
<term>Genes, Mating Type, Fungal</term>
<term>Populus</term>
<term>Silene</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Carica</term>
<term>Champignons</term>
<term>Chromosomes de champignon</term>
<term>Chromosomes de plante</term>
<term>Gènes fongiques du type conjugant</term>
<term>Populus</term>
<term>Silene</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Carica</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carica</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Cluster Analysis</term>
<term>Evolution, Molecular</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de regroupements</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non-recombining region of both the chromosomes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26694866</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>90</Volume>
<Issue>4-5</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.</ArticleTitle>
<Pagination>
<MedlinePgn>359-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-015-0422-y</ELocationID>
<Abstract>
<AbstractText>Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non-recombining region of both the chromosomes. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pandey</LastName>
<ForeName>Ravi S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of North Texas, Denton, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Azad</LastName>
<ForeName>Rajeev K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of North Texas, Denton, TX, USA. Rajeev.Azad@unt.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Mathematics, University of North Texas, Denton, TX, USA. Rajeev.Azad@unt.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029441" MajorTopicYN="N">Carica</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015825" MajorTopicYN="N">Chromosomes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049770" MajorTopicYN="N">Genes, Mating Type, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029751" MajorTopicYN="N">Silene</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Algal sex chromosomes</Keyword>
<Keyword MajorTopicYN="N">DNA segmentation</Keyword>
<Keyword MajorTopicYN="N">Evolutionary strata</Keyword>
<Keyword MajorTopicYN="N">Fungal mating-type chromosomes</Keyword>
<Keyword MajorTopicYN="N">Plant sex chromosomes</Keyword>
<Keyword MajorTopicYN="N">Sex chromosome evolution</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26694866</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-015-0422-y</ArticleId>
<ArticleId IdType="pii">10.1007/s11103-015-0422-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2009 Sep;37(16):5255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Sep 8;24(17):1945-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25176635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1991 Jun;128(2):471-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1649073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2012 Feb;66(2):505-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22276544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Aug;182(4):1391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19448270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Oct;180(2):1131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18791248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Nov;75(11):5618-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">281711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 1):011915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17358192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 Dec;278(6):633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17671795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Feb;14(2):113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23223713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Jan;193(1):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23150606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 29;286(5441):964-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jun;18(6):965-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18463302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 May;173(1):419-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16204214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jul;24(13):3243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12005871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Mar;199(3):809-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Apr;178(4):2169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18430942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 19;423(6942):825-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2013;5(10):1863-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2001 Jun 18;86(25):5815-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11415365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jul;5(7):e1000568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19609352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2009 Nov;22(11):2215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20069724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Nov;9(11):1041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23132114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Sep 13;21(17):1470-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21889891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 1987 Feb;49(1):31-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3032743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1964 May;106:2-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14195748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Apr;175(4):1945-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2009 Apr 30;1:56-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20333177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Apr;32(4):928-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25534033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12059595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Jun;170(2):975-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15834147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Aug;200(4):1275-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26044594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Sep;168(1):141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15454533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 22;427(6972):348-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14737167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1984 Jul;38(4):735-742</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28555827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:485-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Jul;179(3):1513-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Jul;194(3):673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23733786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Mar 17;434(7031):325-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 13;5:9076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1987 Jul;41(4):911-914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Feb;14(2):267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14762062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan 7;41(1):e23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13710-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22869747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2005 Aug;95(2):118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Apr;10(2):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17300986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11127901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 May;53(5):5181-5189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9964850</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Pandey, Ravi S" sort="Pandey, Ravi S" uniqKey="Pandey R" first="Ravi S" last="Pandey">Ravi S. Pandey</name>
</region>
<name sortKey="Azad, Rajeev K" sort="Azad, Rajeev K" uniqKey="Azad R" first="Rajeev K" last="Azad">Rajeev K. Azad</name>
<name sortKey="Azad, Rajeev K" sort="Azad, Rajeev K" uniqKey="Azad R" first="Rajeev K" last="Azad">Rajeev K. Azad</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001930 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001930 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26694866
   |texte=   Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26694866" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020